Properties of game options
Erik Ekström ()
Mathematical Methods of Operations Research, 2006, vol. 63, issue 2, 238 pages
Abstract:
A game option is an American option with the added feature that not only the option holder, but also the option writer, can exercise the option at any time. We characterize the value of a perpetual game option in terms of excessive functions, and we use the connection between excessive functions and concave functions to explicitly determine the value in some examples. Moreover, a condition on the two contract functions is provided under which the value is convex in the underlying diffusion value in the continuation region and increasing in the diffusion coefficient. Copyright Springer-Verlag 2006
Keywords: Optimal stopping games; Game options; Excessive functions; Volatility; Price orderings (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-005-0027-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:63:y:2006:i:2:p:221-238
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-005-0027-3
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().