A model of a 2-player stopping game with priority and asynchronous observation
David Ramsey ()
Mathematical Methods of Operations Research, 2007, vol. 66, issue 1, 149-164
Abstract:
Various models of 2-player stopping games have been considered which assume that players simultaneously observe a sequence of objects. Nash equilibria for such games can be found by first solving the optimal stopping problems arising when one player remains and then defining by recursion the normal form of the game played at each stage when both players are still searching (a 2 × 2 matrix game). The model considered here assumes that Player 1 always observes an object before Player 2. If Player 1 accepts the object, then Player 2 does not see that object. If Player 1 rejects an object, then Player 2 observes it and may choose to accept or reject it. It is shown that such a game can be solved using recursion by solving appropriately defined subgames, which are played at each moment when both players are still searching. In these subgames Player 1 chooses a threshold, such that an object is accepted iff its value is above this threshold. The strategy of Player 2 in this subgame is a stopping rule to be used when Player 1 accepts this object, together with a threshold to be used when Player 1 rejects the object. Whenever the payoff of Player 1 does not depend on the value of the object taken by Player 2, such a game can be treated as two optimisation problems. Two examples are given to illustrate these approaches. Copyright Springer-Verlag 2007
Keywords: Stopping game; Nash equilibrium; Incomplete information (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-006-0136-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:66:y:2007:i:1:p:149-164
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-006-0136-7
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().