EconPapers    
Economics at your fingertips  
 

Average optimality inequality for continuous-time Markov decision processes in Polish spaces

Quanxin Zhu ()

Mathematical Methods of Operations Research, 2007, vol. 66, issue 2, 299-313

Abstract: In this paper, we study the average optimality for continuous-time controlled jump Markov processes in general state and action spaces. The criterion to be minimized is the average expected costs. Both the transition rates and the cost rates are allowed to be unbounded. We propose another set of conditions under which we first establish one average optimality inequality by using the well-known “vanishing discounting factor approach”. Then, when the cost (or reward) rates are nonnegative (or nonpositive), from the average optimality inequality we prove the existence of an average optimal stationary policy in all randomized history dependent policies by using the Dynkin formula and the Tauberian theorem. Finally, when the cost (or reward) rates have neither upper nor lower bounds, we also prove the existence of an average optimal policy in all (deterministic) stationary policies by constructing a “new” cost (or reward) rate. Copyright Springer-Verlag 2007

Keywords: Continuous-time Markov decision process; Average optimality inequality; General state space; Unbounded cost; Optimal stationary policy; 90C40; 93E20 (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-007-0157-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:66:y:2007:i:2:p:299-313

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186

DOI: 10.1007/s00186-007-0157-x

Access Statistics for this article

Mathematical Methods of Operations Research is currently edited by Oliver Stein

More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:mathme:v:66:y:2007:i:2:p:299-313