An envelope theorem and some applications to discounted Markov decision processes
Hugo Cruz-Suárez () and
Raúl Montes- de-Oca ()
Mathematical Methods of Operations Research, 2008, vol. 67, issue 2, 299-321
Abstract:
In this paper, an Envelope Theorem (ET) will be established for optimization problems on Euclidean spaces. In general, the Envelope Theorems permit analyzing an optimization problem and giving the solution by means of differentiability techniques. The ET will be presented in two versions. One of them uses concavity assumptions, whereas the other one does not require such kind of assumptions. Thereafter, the ET established will be applied to the Markov Decision Processes (MDPs) on Euclidean spaces, discounted and with infinite horizon. As the first application, several examples (including some economic models) of discounted MDPs for which the et allows to determine the value iteration functions will be presented. This will permit to obtain the corresponding optimal value functions and the optimal policies. As the second application of the ET, it will be proved that under differentiability conditions in the transition law, in the reward function, and the noise of the system, the value function and the optimal policy of the problem are differentiable with respect to the state of the system. Besides, various examples to illustrate these differentiability conditions will be provided. Copyright Springer-Verlag 2008
Keywords: Envelope theorem; Discounted Markov decision process; Differentiability of the optimal value function; Differentiability of the optimal policy; Economic growth model; 90C40; 93E20 (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-007-0155-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:67:y:2008:i:2:p:299-321
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-007-0155-z
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().