EconPapers    
Economics at your fingertips  
 

Approximating the nondominated set of an MOLP by approximately solving its dual problem

Lizhen Shao () and Matthias Ehrgott ()

Mathematical Methods of Operations Research, 2008, vol. 68, issue 3, 469-492

Abstract: The geometric duality theory of Heyde and Löhne (2006) defines a dual to a multiple objective linear programme (MOLP). In objective space, the primal problem can be solved by Benson’s outer approximation method (Benson 1998a,b) while the dual problem can be solved by a dual variant of Benson’s algorithm (Ehrgott et al. 2007). Duality theory then assures that it is possible to find the (weakly) nondominated set of the primal MOLP by solving its dual. In this paper, we propose an algorithm to solve the dual MOLP approximately but within specified tolerance. This approximate solution set can be used to calculate an approximation of the weakly nondominated set of the primal. We show that this set is a weakly ε-nondominated set of the original primal MOLP and provide numerical evidence that this approach can be faster than solving the primal MOLP approximately. Copyright Springer-Verlag 2008

Keywords: Multiobjective linear programming; Geometric duality; ε-nondominated set; Approximation; Radiotheraphy treatment planning (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-007-0194-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:68:y:2008:i:3:p:469-492

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186

DOI: 10.1007/s00186-007-0194-5

Access Statistics for this article

Mathematical Methods of Operations Research is currently edited by Oliver Stein

More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:mathme:v:68:y:2008:i:3:p:469-492