Optimal discrete search with imperfect specificity
Moshe Kress (),
Kyle Lin and
Roberto Szechtman
Mathematical Methods of Operations Research, 2008, vol. 68, issue 3, 539-549
Abstract:
A target is hidden in one of several possible locations, and the objective is to find the target as fast as possible. One common measure of effectiveness for the search process is the expected time of the search. This type of search optimization problem has been addressed and solved in the literature for the case where the searcher has imperfect sensitivity (possible false negative results), but perfect specificity (no false positive detections). In this paper, which is motivated by recent military and homeland security search situations, we extend the results to the case where the search is subject to false positive detections. Copyright Springer-Verlag 2008
Keywords: Discrete search; Imperfect specificity; uniformly optimal (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-007-0197-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:68:y:2008:i:3:p:539-549
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-007-0197-2
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().