Set-valued duality theory for multiple objective linear programs and application to mathematical finance
Frank Heyde (),
Andreas Löhne () and
Christiane Tammer ()
Mathematical Methods of Operations Research, 2009, vol. 69, issue 1, 159-179
Abstract:
We develop a duality theory for weakly minimal points of multiple objective linear programs which has several advantages in contrast to other theories. For instance, the dual variables are vectors rather than matrices and the dual feasible set is a polyhedron. We use a set-valued dual objective map the values of which have a very simple structure, in fact they are hyperplanes. As in other set-valued (but not in vector-valued) approaches, there is no duality gap in the case that the right-hand side of the linear constraints is zero. Moreover, we show that the whole theory can be developed by working in a complete lattice. Thus the duality theory has a high degree of analogy to its classical counterpart. Another important feature of our theory is that the infimum of the set-valued dual problem is attained in a finite set of vertices of the dual feasible domain. These advantages open the possibility of various applications such as a dual simplex algorithm. Exemplarily, we discuss an application to a Markowitz-type bicriterial portfolio optimization problem where the risk is measured by the Conditional Value at Risk. Copyright Springer-Verlag 2009
Keywords: Multiobjective optimization; Duality; Infimal set; Attainment in vertices; Markowitz model (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-008-0216-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:69:y:2009:i:1:p:159-179
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-008-0216-y
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().