Maximum-cover source location problems with objective edge-connectivity three
Kenya Sugihara () and
Hiro Ito ()
Mathematical Methods of Operations Research, 2009, vol. 70, issue 1, 183-193
Abstract:
Given a graph G=(V, E), a set of vertices $${S \subseteq V}$$ covers a vertex $${v \in V}$$ if the edge-connectivity between S and v is at least a given number k. Vertices in S are called sources. The maximum-cover source location problem, which is a variation of the source location problem, is to find a source set S with a given size at most p, maximizing the sum of the weight of vertices covered by S. In this paper, we show a polynomial-time algorithm for this problem in the case of k = 3 for a given undirected graph with a vertex weight function and an edge capacity function. Moreover, we show that this problem is NP-hard even if vertex weights and edge capacities are both uniform for general k. Copyright Springer-Verlag 2009
Keywords: Maximum-cover source location problem; Polynomial-time algorithm; NP-hard (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-008-0266-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:70:y:2009:i:1:p:183-193
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-008-0266-1
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().