EconPapers    
Economics at your fingertips  
 

Unboundedness in reverse convex and concave integer programming

Wiesława Obuchowska ()

Mathematical Methods of Operations Research, 2010, vol. 72, issue 2, 187-204

Abstract: In this paper we are concerned with the problem of unboundedness and existence of an optimal solution in reverse convex and concave integer optimization problems. In particular, we present necessary and sufficient conditions for existence of an upper bound for a convex objective function defined over the feasible region contained in $${\mathbb{Z}^n}$$ . The conditions for boundedness are provided in a form of an implementable algorithm, showing that for the considered class of functions, the integer programming problem is unbounded if and only if the associated continuous problem is unbounded. We also address the problem of boundedness in the global optimization problem of maximizing a convex function over a set of integers contained in a convex and unbounded region. It is shown in the paper that in both types of integer programming problems, the objective function is either unbounded from above, or it attains its maximum at a feasible integer point. Copyright Springer-Verlag 2010

Keywords: Concave integer minimization; Reverse convex constraints; Unboundedness (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-010-0315-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:72:y:2010:i:2:p:187-204

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186

DOI: 10.1007/s00186-010-0315-4

Access Statistics for this article

Mathematical Methods of Operations Research is currently edited by Oliver Stein

More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:mathme:v:72:y:2010:i:2:p:187-204