EconPapers    
Economics at your fingertips  
 

Steiner tree packing revisited

Nam-Dũng Hoàng () and Thorsten Koch ()

Mathematical Methods of Operations Research, 2012, vol. 76, issue 1, 95-123

Abstract: The Steiner tree packing problem (STPP) in graphs is a long studied problem in combinatorial optimization. In contrast to many other problems, where there have been tremendous advances in practical problem solving, STPP remains very difficult. Most heuristics schemes are ineffective and even finding feasible solutions is already NP-hard. What makes this problem special is that in order to reach the overall optimal solution non-optimal solutions to the underlying NP-hard Steiner tree problems must be used. Any non-global approach to the STPP is likely to fail. Integer programming is currently the best approach for computing optimal solutions. In this paper we review some “classical” STPP instances which model the underlying real world application only in a reduced form. Through improved modelling, including some new cutting planes, and by employing recent advances in solver technology we are for the first time able to solve those instances in the original 3D grid graphs to optimimality. Copyright Springer-Verlag 2012

Keywords: Steiner tree packing; Integer programming; Grid graph; 90C90; 90C11; 90C35 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-012-0391-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:76:y:2012:i:1:p:95-123

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186

DOI: 10.1007/s00186-012-0391-8

Access Statistics for this article

Mathematical Methods of Operations Research is currently edited by Oliver Stein

More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:mathme:v:76:y:2012:i:1:p:95-123