EconPapers    
Economics at your fingertips  
 

Newsvendor-type models with decision-dependent uncertainty

Soonhui Lee (), Tito Homem- de-Mello () and Anton Kleywegt ()

Mathematical Methods of Operations Research, 2012, vol. 76, issue 2, 189-221

Abstract: Models for decision-making under uncertainty use probability distributions to represent variables whose values are unknown when the decisions are to be made. Often the distributions are estimated with observed data. Sometimes these variables depend on the decisions but the dependence is ignored in the decision maker’s model, that is, the decision maker models these variables as having an exogenous probability distribution independent of the decisions, whereas the probability distribution of the variables actually depend on the decisions. It has been shown in the context of revenue management problems that such modeling error can lead to systematic deterioration of decisions as the decision maker attempts to refine the estimates with observed data. Many questions remain to be addressed. Motivated by the revenue management, newsvendor, and a number of other problems, we consider a setting in which the optimal decision for the decision maker’s model is given by a particular quantile of the estimated distribution, and the empirical distribution is used as estimator. We give conditions under which the estimation and control process converges, and show that although in the limit the decision maker’s model appears to be consistent with the observed data, the modeling error can cause the limit decisions to be arbitrarily bad. Copyright Springer-Verlag 2012

Keywords: Newsvendor model; Data-driven optimization; Stochastic approximation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-012-0396-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:76:y:2012:i:2:p:189-221

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186

DOI: 10.1007/s00186-012-0396-3

Access Statistics for this article

Mathematical Methods of Operations Research is currently edited by Oliver Stein

More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:mathme:v:76:y:2012:i:2:p:189-221