Resource allocation games: a compromise stable extension of bankruptcy games
Soesja Grundel (),
Peter Borm and
Herbert Hamers
Mathematical Methods of Operations Research, 2013, vol. 78, issue 2, 149-169
Abstract:
This paper presents an extension of the traditional bankruptcy problem. In a resource allocation problem there is a common-pool resource, which needs to be divided among agents. Each agent is characterized by a claim on this pool and an individual linear monetary reward function for assigned resources. Analyzing these problems a new class of transferable utility games is introduced, called resource allocation games. These games are based on the bankruptcy model, as introduced by O’Neill (Math Soc Sci 2:345–371, 1982 ). It is shown that the properties of totally balancedness and compromise stability can be extended to resource allocation games, although the property of convexity is not maintained in general. Moreover, an explicit expression for the nucleolus of these games is provided. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Bankruptcy games; Compromise stability; Nucleolus (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-013-0437-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:78:y:2013:i:2:p:149-169
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-013-0437-6
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().