Prices stabilization for inexact unit-commitment problems
Sofia Zaourar () and
Jérôme Malick ()
Mathematical Methods of Operations Research, 2013, vol. 78, issue 3, 359 pages
Abstract:
A widespread and successful approach to tackle unit-commitment problems is constraint decomposition: by dualizing the linking constraints, the large-scale nonconvex problem decomposes into smaller independent subproblems. The dual problem consists then in finding the best Lagrangian multiplier (the optimal “price”); it is solved by a convex nonsmooth optimization method. Realistic modeling of technical production constraints makes the subproblems themselves difficult to solve exactly. Nonsmooth optimization algorithms can cope with inexact solutions of the subproblems. In this case however, we observe that the computed dual solutions show a noisy and unstable behaviour, that could prevent their use as price indicators. In this paper, we present a simple and easy-to-implement way to stabilize dual optimal solutions, by penalizing the noisy behaviour of the prices in the dual objective. After studying the impact of a general stabilization term on the model and the resolution scheme, we focus on the penalization by discrete total variation, showing the consistency of the approach. We illustrate our stabilization on a synthetic example, and real-life problems from EDF (the French Electricity Board). Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Unit-commitment problems; Lagrangian duality; Convex analysis; Total variation regularization; Inexact bundle method (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-013-0447-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:78:y:2013:i:3:p:341-359
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-013-0447-4
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().