A trust-region method with improved adaptive radius for systems of nonlinear equations
Hamid Esmaeili () and
Morteza Kimiaei ()
Mathematical Methods of Operations Research, 2016, vol. 83, issue 1, 109-125
Abstract:
In this study, a new adaptive trust-region strategy is presented to solve nonlinear systems. More specifically, we propose a new method leading to produce a smaller trust-region radius close to the optimizer and a larger trust-region radius far away from the optimizer. Accordingly, it can lead to a smaller step-size close to the optimizer and a larger one far away from the optimizer. The new strategy includes a convex combination of the maximum norm of function value of some preceding successful iterates and the current norm of function value. The global convergence of the proposed approach is established while the local q-quadratic convergence rate is proved under local error bound condition, which is weaker than the nonsingularity. Numerical results of the proposed algorithm are also reported. Copyright Springer-Verlag Berlin Heidelberg 2016
Keywords: Nonlinear equation; Trust region algorithm; Adaptive radius; Theoretical convergence; 90C30; 93E24; 34A34 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00186-015-0522-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:83:y:2016:i:1:p:109-125
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-015-0522-0
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().