Robust unit commitment with $$n-1$$ n - 1 security criteria
Arash Gourtani (),
Huifu Xu (),
David Pozo and
Tri-Dung Nguyen ()
Additional contact information
Arash Gourtani: University of Southampton
Huifu Xu: University of Southampton
Tri-Dung Nguyen: University of Southampton
Mathematical Methods of Operations Research, 2016, vol. 83, issue 3, No 4, 373-408
Abstract:
Abstract The short-term unit commitment and reserve scheduling decisions are made in the face of increasing supply-side uncertainty in power systems. This has mainly been caused by a higher penetration of renewable energy generation that is encouraged and enforced by the market and policy makers. In this paper, we propose a two-stage stochastic and distributionally robust modeling framework for the unit commitment problem with supply uncertainty. Based on the availability of the information on the distribution of the random supply, we consider two specific models: (a) a moment model where the mean values of the random supply variables are known, and (b) a mixture distribution model where the true probability distribution lies within the convex hull of a finite set of known distributions. In each case, we reformulate these models through Lagrange dualization as a semi-infinite program in the former case and a one-stage stochastic program in the latter case. We solve the reformulated models using sampling method and sample average approximation, respectively. We also establish exponential rate of convergence of the optimal value when the randomization scheme is applied to discretize the semi-infinite constraints. The proposed robust unit commitment models are applied to an illustrative case study, and numerical test results are reported in comparison with the two-stage non-robust stochastic programming model.
Keywords: Unit commitment problem; Distributionally robust optimization; Mixture distribution; Sample average approximation; Convergence analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00186-016-0532-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:83:y:2016:i:3:d:10.1007_s00186-016-0532-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-016-0532-6
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().