Discrete Wasserstein barycenters: optimal transport for discrete data
Ethan Anderes (),
Steffen Borgwardt () and
Jacob Miller ()
Additional contact information
Ethan Anderes: University of California Davis
Steffen Borgwardt: Technische Universität München
Jacob Miller: University of California Davis
Mathematical Methods of Operations Research, 2016, vol. 84, issue 2, No 6, 389-409
Abstract:
Abstract Wasserstein barycenters correspond to optimal solutions of transportation problems for several marginals, and as such have a wide range of applications ranging from economics to statistics and computer science. When the marginal probability measures are absolutely continuous (or vanish on small sets) the theory of Wasserstein barycenters is well-developed [see the seminal paper (Agueh and Carlier in SIAM J Math Anal 43(2):904–924, 2011)]. However, exact continuous computation of Wasserstein barycenters in this setting is tractable in only a small number of specialized cases. Moreover, in many applications data is given as a set of probability measures with finite support. In this paper, we develop theoretical results for Wasserstein barycenters in this discrete setting. Our results rely heavily on polyhedral theory which is possible due to the discrete structure of the marginals. The results closely mirror those in the continuous case with a few exceptions. In this discrete setting we establish that Wasserstein barycenters must also be discrete measures and there is always a barycenter which is provably sparse. Moreover, for each Wasserstein barycenter there exists a non-mass-splitting optimal transport to each of the discrete marginals. Such non-mass-splitting transports do not generally exist between two discrete measures unless special mass balance conditions hold. This makes Wasserstein barycenters in this discrete setting special in this regard. We illustrate the results of our discrete barycenter theory with a proof-of-concept computation for a hypothetical transportation problem with multiple marginals: distributing a fixed set of goods when the demand can take on different distributional shapes characterized by the discrete marginal distributions. A Wasserstein barycenter, in this case, represents an optimal distribution of inventory facilities which minimize the squared distance/transportation cost totaled over all demands.
Keywords: Barycenter; Optimal transport; Multiple marginals; Polyhedral theory; Mathematical programming; 90B80; 90C05; 90C10; 90C46; 90C90 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s00186-016-0549-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:84:y:2016:i:2:d:10.1007_s00186-016-0549-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-016-0549-x
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().