An M/PH/K queue with constant impatient time
Qi-Ming He (),
Hao Zhang and
Qingqing Ye
Additional contact information
Qi-Ming He: University of Waterloo
Hao Zhang: Wuhan University
Qingqing Ye: Nanjing University of Science and Technology
Mathematical Methods of Operations Research, 2018, vol. 87, issue 1, No 6, 139-168
Abstract:
Abstract This paper is concerned with an M/PH/K queue with customer abandonment, constant impatient time, and many servers. By combining the method developed in Choi et al. (Math Oper Res 29:309–325, 2004) and Kim and Kim (Perform Eval 83–84:1–15, 2015) and the state space reduction method introduced in Ramaswami (Stoch Models 1:393–417, 1985), the paper develops an efficient algorithm for computing performance measures for the queueing system of interest. The paper shows a number of properties associated with matrices used in the development of the algorithm, which make it possible for the algorithm, under certain conditions, to handle systems with up to one hundred servers. The paper also obtains analytical properties of performance measures that are useful in gaining insight into the queueing system of interest.
Keywords: Queueing systems; Markov process; Matrix-analytic methods; Impatient customers; Primary: 60K25; Secondary: 90-08 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00186-017-0612-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:87:y:2018:i:1:d:10.1007_s00186-017-0612-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-017-0612-2
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().