Non-linear filtering and optimal investment under partial information for stochastic volatility models
Dalia Ibrahim () and
Frédéric Abergel
Additional contact information
Dalia Ibrahim: CentraleSupélec
Frédéric Abergel: CentraleSupélec
Mathematical Methods of Operations Research, 2018, vol. 87, issue 3, No 1, 346 pages
Abstract:
Abstract This paper studies the question of filtering and maximizing terminal wealth from expected utility in partial information stochastic volatility models. The special feature is that the only information available to the investor is the one generated by the asset prices, and the unobservable processes will be modeled by stochastic differential equations. Using the change of measure techniques, the partial observation context can be transformed into a full information context such that coefficients depend only on past history of observed prices (filter processes). Adapting the stochastic non-linear filtering, we show that under some assumptions on the model coefficients, the estimation of the filters depend on a priori models for the trend and the stochastic volatility. Moreover, these filters satisfy a stochastic partial differential equations named “Kushner–Stratonovich equations”. Using the martingale duality approach in this partially observed incomplete model, we can characterize the value function and the optimal portfolio. The main result here is that, for power and logarithmic utility, the dual value function associated to the martingale approach can be expressed, via the dynamic programming approach, in terms of the solution to a semilinear partial differential equation which depends on the filters estimate and the volatility. We illustrate our results with some examples of stochastic volatility models popular in the financial literature.
Keywords: Partial information; Stochastic volatility; Utility maximization; Martingale duality method; Non-linear filtering; Kushner–Stratonovich equations; Semilinear partial differential equation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00186-017-0609-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:87:y:2018:i:3:d:10.1007_s00186-017-0609-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-017-0609-x
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().