Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case
Valentin Hartmann () and
Dominic Schuhmacher ()
Additional contact information
Valentin Hartmann: University of Goettingen
Dominic Schuhmacher: University of Goettingen
Mathematical Methods of Operations Research, 2020, vol. 92, issue 1, No 5, 133-163
Abstract:
Abstract We consider the problem of finding an optimal transport plan between an absolutely continuous measure and a finitely supported measure of the same total mass when the transport cost is the unsquared Euclidean distance. We may think of this problem as closest distance allocation of some resource continuously distributed over Euclidean space to a finite number of processing sites with capacity constraints. This article gives a detailed discussion of the problem, including a comparison with the much better studied case of squared Euclidean cost. We present an algorithm for computing the optimal transport plan, which is similar to the approach for the squared Euclidean cost by Aurenhammer et al. (Algorithmica 20(1):61–76, 1998) and Mérigot (Comput Graph Forum 30(5):1583–1592, 2011). We show the necessary results to make the approach work for the Euclidean cost, evaluate its performance on a set of test cases, and give a number of applications. The later include goodness-of-fit partitions, a novel visual tool for assessing whether a finite sample is consistent with a posited probability density.
Keywords: Monge–Kantorovich problem; Spatial resource allocation; Wasserstein metric; Weighted Voronoi tessellation; Primary 65D18; Secondary 51N20; 62-09 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00186-020-00703-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:92:y:2020:i:1:d:10.1007_s00186-020-00703-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-020-00703-z
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().