Optimal stopping and impulse control in the presence of an anticipated regime switch
Luis H. R. Alvarez E. () and
Wiljami Sillanpää ()
Additional contact information
Luis H. R. Alvarez E.: University of Turku
Wiljami Sillanpää: University of Turku
Mathematical Methods of Operations Research, 2023, vol. 98, issue 2, No 3, 205-230
Abstract:
Abstract We consider a class of stochastic optimal stopping and impulse control problems where the agent solving the problem anticipates that a regime switch will happen at a random time in the future. We assume that there are only two regimes, the regime switching time is exponentially distributed, the underlying stochastic process is a linear, regular, time-homogeneous diffusion in both regimes and the payoff may be regime-dependent. This is in contrast with most existing literature on the topic, where regime switching is modulated by a continuous-time Markov chain and the underlying process and payoff belong to the same parametric family in all regimes. We state a set of easily verifiable sufficient conditions under which the solutions to these problems are given by one-sided threshold strategies. We prove uniqueness of the thresholds and characterize them as solutions to certain algebraic equations. We also study how anticipation affects optimal policies i.e. we present various comparison results for problems with and without regime switching. It may happen that the anticipative value functions and optimal policies coincide with the usual ones even if the regime switching structure is non-trivial. We illustrate our results with practical examples.
Keywords: Optimal stopping; Impulse control; Regime switching; Anticipative control; Diffusions (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00186-023-00838-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:98:y:2023:i:2:d:10.1007_s00186-023-00838-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-023-00838-9
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().