On the Boolean Model of Wiener Sausages
Rostislav Černý (),
Stefan Funken () and
Evgueni Spodarev ()
Additional contact information
Rostislav Černý: Charles University
Stefan Funken: University of Ulm
Evgueni Spodarev: University of Ulm
Methodology and Computing in Applied Probability, 2008, vol. 10, issue 1, 23-37
Abstract:
Abstract The Boolean model of Wiener sausages is a random closed set that can be thought of as a random collection of parallel neighborhoods of independent Wiener paths in space. It describes e.g. the target detection area of a network of sensors moving according to the Brownian dynamics whose initial locations are chosen in the medium at random. In the paper, the capacity functional of this Boolean model is given. Moreover, the one- and two-point coverage probabilities as well as the contact distribution function and the specific surface area are studied. In $\mathbb{R}^2$ and $\mathbb{R}^3$ , the one- and two-point coverage probabilities are calculated numerically by Monte Carlo simulations and as a solution of the heat conduction problem. The corresponding approximation formulae are given and the error of approximation is analyzed.
Keywords: Wiener sausage; Boolean model; Sensor network; Capacity; Volume fraction; Specific surface area; Covariance function; Contact distribution function; Approximation; Heat conduction problem; Finite element method; Monte Carlo simulations; Stochastic geometry; Primary 60D05; 60J65; Secondary 65C05; 65M60 (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11009-007-9031-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:10:y:2008:i:1:d:10.1007_s11009-007-9031-9
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-007-9031-9
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().