Semi-Iterative Minimum Cross-Entropy Algorithms for Rare-Events, Counting, Combinatorial and Integer Programming
Reuven Rubinstein ()
Additional contact information
Reuven Rubinstein: Israel Institute of Technology
Methodology and Computing in Applied Probability, 2008, vol. 10, issue 2, 121-178
Abstract:
Abstract We present a new generic minimum cross-entropy method, called the semi-iterative MinxEnt, or simply SME, for rare-event probability estimation, counting, and approximation of the optimal solutions of a broad class of NP-hard linear integer and combinatorial optimization problems (COP’s). The main idea of our approach is to associate with each original problem an auxiliary single-constrained convex MinxEnt program of a special type, which has a closed-form solution. We prove that the optimal pdf obtained from the solution of such a specially designed MinxEnt program is a zero variance pdf, provided the “temperature” parameter is set to minus infinity. In addition we prove that the parametric pdf based on the product of marginals obtained from the optimal zero variance pdf coincides with the parametric pdf of the standard cross-entropy (CE) method. Thus, originally designed at the end of 1990s as a heuristics for estimation of rare-events and COP’s, CE has strong connection with MinxEnt, and thus, strong mathematical foundation. The crucial difference between the proposed SME method and the standard CE counterparts lies in their simulation-based versions: in the latter we always require to generate (via Monte Carlo) a sequence of tuples including the temperature parameter and the parameter vector in the optimal marginal pdf’s, while in the former we can fix in advance the temperature parameter (to be set to a large negative number) and then generate (via Monte Carlo) a sequence of parameter vectors of the optimal marginal pdf’s alone. In addition, in contrast to CE, neither the elite sample no the rarity parameter is needed in SME. As result, the proposed SME algorithm becomes simpler, faster and at least as accurate as the standard CE. Motivated by the SME method we introduce a new updating rule for the parameter vector in the parametric pdf of the CE program. We show that the CE algorithm based on the new updating rule, called the combined CE (CCE), is at least as fast and accurate as its standard CE and SME counterparts. We also found numerically that the variance minimization (VM)-based algorithms are the most robust ones. We, finally, demonstrate numerically that the proposed algorithms, and in particular the CCE one, allows accurate estimation of counting quantities up to the order of hundred of decision variables and hundreds of constraints.
Keywords: Cross-entropy; Boltzmann distribution; Combinatorial optimization; Rare events; Counting problems; Monte Carlo simulation; 65C05; 90C27; 94A17 (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11009-007-9061-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:10:y:2008:i:2:d:10.1007_s11009-007-9061-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-007-9061-3
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().