Computing Bounds on the Expected Maximum of Correlated Normal Variables
Andrew M. Ross ()
Additional contact information
Andrew M. Ross: Eastern Michigan University
Methodology and Computing in Applied Probability, 2010, vol. 12, issue 1, 111-138
Abstract:
Abstract We compute upper and lower bounds on the expected maximum of correlated normal variables (up to a few hundred in number) with arbitrary means, variances, and correlations. Two types of bounding processes are used: perfectly dependent normal variables, and independent normal variables, both with arbitrary mean values. The expected maximum for the perfectly dependent variables can be evaluated in closed form; for the independent variables, a single numerical integration is required. Higher moments are also available. We use mathematical programming to find parameters for the processes, so they will give bounds on the expected maximum, rather than approximations of unknown accuracy. Our original application is to the maximum number of people on-line simultaneously during the day in an infinite-server queue with a time-varying arrival rate. The upper and lower bounds are tighter than previous bounds, and in many of our examples are within 5% or 10% of each other. We also demonstrate the bounds’ performance on some PERT models, AR/MA time series, Brownian motion, and product-form correlation matrices.
Keywords: Multivariate normal expectations; Singular distribution; Computing bounds; 60E15; 60J65; 60K10; 65C50 (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11009-008-9097-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:12:y:2010:i:1:d:10.1007_s11009-008-9097-z
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-008-9097-z
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().