Modeling Dependencies in Operational Risk with Hybrid Bayesian Networks
Stefan Mittnik and
Irina Starobinskaya ()
Additional contact information
Irina Starobinskaya: University of Munich
Methodology and Computing in Applied Probability, 2010, vol. 12, issue 3, 379-390
Abstract:
Abstract This paper addresses the problem of quantifying and modeling financial institutions’ operational risk in accordance with the Advanced Measurement Approach put forth in the Basel II Accord. We argue that standard approaches focusing on modeling stochastic dependencies are not sufficient to adequately assess operational risk. In addition to stochastic dependencies, causal topological dependencies between the risk classes are typically encountered. These dependencies arise when risk units have common information- and/or work-flows and when failure of upstream processes imply risk for downstream processes. In this paper, we present a modeling strategy that explicitly captures both topological and stochastic dependencies between risk classes. We represent the operational-risk taxonomy in the framework of a hybrid Bayesian network (BN) and provide an intuitively compelling approach for handling causal relationships and external influences. We demonstrate the use of hybrid BNs as a tool for mapping causal dependencies between frequencies and severities of risk events and for modeling common shocks. Monte-Carlo simulations illustrate that the impact of topological dependencies on triggering overall system breakdowns can be substantial.
Keywords: Operational risk; Topological dependencies; Hybrid Bayesian networks; 62P05; 91B30; 62F15; 68T37 (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s11009-007-9066-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:12:y:2010:i:3:d:10.1007_s11009-007-9066-y
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-007-9066-y
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().