Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications
Bruno Casella and
Gareth O. Roberts ()
Additional contact information
Bruno Casella: University of Warwick
Gareth O. Roberts: University of Warwick
Methodology and Computing in Applied Probability, 2011, vol. 13, issue 3, 449-473
Abstract:
Abstract We introduce a novel algorithm (JEA) to simulate exactly from a class of one-dimensional jump-diffusion processes with state-dependent intensity. The simulation of the continuous component builds on the recent Exact Algorithm (Beskos et al., Bernoulli 12(6):1077–1098, 2006a). The simulation of the jump component instead employs a thinning algorithm with stochastic acceptance probabilities in the spirit of Glasserman and Merener (Proc R Soc Lond Ser A Math Phys Eng Sci 460(2041):111–127, 2004). In turn JEA allows unbiased Monte Carlo simulation of a wide class of functionals of the process’ trajectory, including discrete averages, max/min, crossing events, hitting times. Our numerical experiments show that the method outperforms Monte Carlo methods based on the Euler discretization.
Keywords: Jump diffusion; Simulation; Exact Algorithms; Barrier option pricing; Primary 60K30; Secondary 65C05 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://link.springer.com/10.1007/s11009-009-9163-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:13:y:2011:i:3:d:10.1007_s11009-009-9163-1
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-009-9163-1
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().