Optimal Scaling of Random Walk Metropolis Algorithms with Non-Gaussian Proposals
Peter Neal () and
Gareth Roberts ()
Additional contact information
Peter Neal: University of Manchester
Gareth Roberts: University of Warwick
Methodology and Computing in Applied Probability, 2011, vol. 13, issue 3, 583-601
Abstract:
Abstract The asymptotic optimal scaling of random walk Metropolis (RWM) algorithms with Gaussian proposal distributions is well understood for certain specific classes of target distributions. These asymptotic results easily extend to any light tailed proposal distribution with finite fourth moment. However, heavy tailed proposal distributions such as the Cauchy distribution are known to have a number of desirable properties, and in many situations are preferable to light tailed proposal distributions. Therefore we consider the question of scaling for Cauchy distributed proposals for a wide range of independent and identically distributed (iid) product densities. The results are somewhat surprising as to when and when not Cauchy distributed proposals are preferable to Gaussian proposal distributions. This provides motivation for finding proposal distributions which improve on both Gaussian and Cauchy proposals, both for finite dimensional target distributions and asymptotically as the dimension of the target density, d → ∞. Throughout we seek the scaling of the proposal distribution which maximizes the expected squared jumping distance (ESJD).
Keywords: MCMC; Cauchy distribution; Spherical distributions; Heavy tailed distributions; Random walk metropolis; Optimal scaling; Primary 60F05; Secondary 65C05 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11009-010-9176-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:13:y:2011:i:3:d:10.1007_s11009-010-9176-9
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-010-9176-9
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().