MARM Processes Part II: The Empirically-Based Subclass
Benjamin Melamed () and
Xiang Zhao ()
Additional contact information
Benjamin Melamed: Rutgers University
Xiang Zhao: Rutgers University
Methodology and Computing in Applied Probability, 2013, vol. 15, issue 1, 37-83
Abstract:
Abstract MARM (Multivariate Autoregressive Modular) processes constitute a versatile class of multidimensional stochastic sequences which can exactly fit arbitrary multi-dimensional empirical histograms and approximately fit the leading empirical autocorrelations and cross-correlations. A companion paper (Part I) presented the general theory of MARM processes. This paper (Part II) proposes practical MARM modeling and forecasting methodologies of considerable generality, suitable for implementation on a computer. The purpose of Part II is twofold: (1) to specialize the general class of MARM processes to a practical subclass, called Empirically-Based MARM (EB-MARM) processes, suitable for modeling of empirical vector-valued time series, and devise the corresponding fitting and forecasting algorithms; and (2) to illustrate the efficacy of the EB-MARM fitting and forecasting algorithms. Specifically, we shall consider MARM processes with iid step-function innovation densities and distortions based on an empirical multi-dimensional histogram, as well as empirical autocorrelation and cross-correlation functions. Finally, we illustrate the efficacy of these methodologies with an example of a three-dimension time series vector, using a software environment, called MultiArmLab, which supports MARM modeling and forecasting.
Keywords: MARM processes; Empirically-based MARM processes; EB-MARM fitting methodology; EB-MARM forecasting methodology; 60G10; 60G25; 60J75; 62M10 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11009-011-9210-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:15:y:2013:i:1:d:10.1007_s11009-011-9210-6
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-011-9210-6
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().