Tandem Queues with Impatient Customers for Blood Screening Procedures
Shaul K. Bar-Lev (),
Hans Blanc,
Onno Boxma (),
Guido Janssen () and
David Perry ()
Additional contact information
Shaul K. Bar-Lev: University of Haifa
Onno Boxma: Eindhoven University of Technology
Guido Janssen: Eindhoven University of Technology
David Perry: University of Haifa
Methodology and Computing in Applied Probability, 2013, vol. 15, issue 2, 423-451
Abstract:
Abstract We study a blood testing procedure for detecting viruses like HIV, HBV and HCV. In this procedure, blood samples go through two screening steps. The first test is ELISA (antibody Enzyme Linked Immuno-Sorbent Assay). The portions of blood which are found not contaminated in this first phase are tested in groups through PCR (Polymerase Chain Reaction). The ELISA test is less sensitive than the PCR test and the PCR tests are considerably more expensive. We model the two test phases of blood samples as services in two queues in series; service in the second queue is in batches, as PCR tests are done in groups. The fact that blood can only be used for transfusions until a certain expiration date leads, in the tandem queue, to the feature of customer impatience. Since the first queue basically is an infinite server queue, we mainly focus on the second queue, which in its most general form is an S-server M/G [k, K]/S + G queue, with batches of sizes which are bounded by k and K. Our objective is to maximize the expected profit of the system, which is composed of the amount earned for items which pass the test (and before their patience runs out), minus costs. This is done by an appropriate choice of the decision variables, namely, the batch sizes and the number of servers at the second service station. As will be seen, even the simplest version of the batch queue, the M/M [k, K]/1 + M queue, already gives rise to serious analytical complications for any batch size larger than 1. These complications are discussed in detail, and handled for K = 2. In view of the fact that we aim to solve realistic optimization problems for blood screening procedures, these analytical complications force us to take recourse to either a numerical approach or approximations. We present a numerical solution for the queue length distribution in the M/M [k, K]/S + M queue and then formulate and solve several optimization problems. The power-series algorithm, which is a numerical-analytic method, is also discussed.
Keywords: Tandem queues; Impatient customers; Blood screening procedures; Group testing procedures; 60K25; 90B22 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11009-011-9250-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:15:y:2013:i:2:d:10.1007_s11009-011-9250-y
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-011-9250-y
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().