Generating a Random Collection of Discrete Joint Probability Distributions Subject to Partial Information
Luis V. Montiel () and
J. Eric Bickel ()
Additional contact information
Luis V. Montiel: The University of Texas at Austin
J. Eric Bickel: The University of Texas at Austin
Methodology and Computing in Applied Probability, 2013, vol. 15, issue 4, 951-967
Abstract:
Abstract In this paper, we develop a practical and flexible methodology for generating a random collection of discrete joint probability distributions, subject to a specified information set, which can be expressed as a set of linear constraints (e.g., marginal assessments, moments, or pairwise correlations). Our approach begins with the construction of a polytope using this set of linear constraints. This polytope defines the set of all joint distributions that match the given information; we refer to this set as the “truth set.” We then implement a Monte Carlo procedure, the Hit-and-Run algorithm, to sample points uniformly from the truth set. Each sampled point is a joint distribution that matches the specified information. We provide guidelines to determine the quality of this sampled collection. The sampled points can be used to solve optimization models and to simulate systems under different uncertainty scenarios.
Keywords: Joint probability distributions; Simulation; Hit and run; Polytopes; 90C99; 65C05; 60H99 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11009-012-9292-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:15:y:2013:i:4:d:10.1007_s11009-012-9292-9
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-012-9292-9
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().