Spatial Autocorrelation for Subdivided Populations with Invariant Migration Schemes
Ola Hössjer ()
Additional contact information
Ola Hössjer: Stockholm University
Methodology and Computing in Applied Probability, 2014, vol. 16, issue 4, 777-810
Abstract:
Abstract For populations with geographic substructure and selectively neutral genetic data, the short term dynamics is a balance between migration and genetic drift. Before fixation of any allele, the system enters into a quasi equilibrium (QE) state. Hössjer and Ryman (2012) developed a general QE methodology for computing approximations of spatial autocorrelations of allele frequencies between subpopulations, subpopulation differentiation (fixation indexes) and variance effective population sizes. In this paper we treat a class of models with translationally invariant migration and use Fourier transforms for computing these quantities. We show how the QE approach is related to other methods based on conditional kinship coefficients between subpopulations under mutation-migration-drift equilibrium. We also verify that QE autocorrelations of allele frequencies are closely related to the expected value of Moran’s autocorrelation function and treat limits of continuous spatial location (isolation by distance) and an infinite lattice of subpopulations. The theory is illustrated with several examples including island models, circular and torus stepping stone models, von Mises models, hierarchical island models and Gaussian models. It is well known that the fixation index contains information about the effective number of migrants. The spatial autocorrelations are complementary and typically reveal the type of migration (local or global).
Keywords: Fixation index; Fourier transforms; Kinship coefficients; Quasi equilibrium; Spatial autocorrelations; Translationally invariant migration; 92D25; 60F99 (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11009-013-9321-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:16:y:2014:i:4:d:10.1007_s11009-013-9321-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-013-9321-3
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().