EconPapers    
Economics at your fingertips  
 

Adaptive Rejection Metropolis Simulated Annealing for Detecting Global Maximum Regions

Huaiye Zhang and Inyoung Kim ()
Additional contact information
Huaiye Zhang: Virginia Polytechnic Institute and State University
Inyoung Kim: Virginia Polytechnic Institute and State University

Methodology and Computing in Applied Probability, 2016, vol. 18, issue 1, 1-19

Abstract: Abstract A finite mixture model has been used to fit the data from heterogeneous populations to many applications. An Expectation Maximization (EM) algorithm is the most popular method to estimate parameters in a finite mixture model. A Bayesian approach is another method for fitting a mixture model. However, the EM algorithm often converges to the local maximum regions, and it is sensitive to the choice of starting points. In the Bayesian approach, the Markov Chain Monte Carlo (MCMC) sometimes converges to the local mode and is difficult to move to another mode. Hence, in this paper we propose a new method to improve the limitation of EM algorithm so that the EM can estimate the parameters at the global maximum region and to develop a more effective Bayesian approach so that the MCMC chain moves from one mode to another more easily in the mixture model. Our approach is developed by using both simulated annealing (SA) and adaptive rejection metropolis sampling (ARMS). Although SA is a well-known approach for detecting distinct modes, the limitation of SA is the difficulty in choosing sequences of proper proposal distributions for a target distribution. Since ARMS uses a piecewise linear envelope function for a proposal distribution, we incorporate ARMS into an SA approach so that we can start a more proper proposal distribution and detect separate modes. As a result, we can detect the maximum region and estimate parameters for this global region. We refer to this approach as ARMS annealing. By putting together ARMS annealing with the EM algorithm and with the Bayesian approach, respectively, we have proposed two approaches: an EM-ARMS annealing algorithm and a Bayesian-ARMS annealing approach. We compare our two approaches with traditional EM algorithm alone and Bayesian approach alone using simulation, showing that our two approaches are comparable to each other but perform better than EM algorithm alone and Bayesian approach alone. Our two approaches detect the global maximum region well and estimate the parameters in this region. We demonstrate the advantage of our approaches using an example of the mixture of two Poisson regression models. This mixture model is used to analyze a survey data on the number of charitable donations.

Keywords: Adaptive rejection metropolis sampling; Expectation Maximization algorithm; Finite mixture models; Simulated annealing; 62A99 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-014-9395-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:18:y:2016:i:1:d:10.1007_s11009-014-9395-6

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-014-9395-6

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:18:y:2016:i:1:d:10.1007_s11009-014-9395-6