EconPapers    
Economics at your fingertips  
 

Twisting the Alive Particle Filter

Adam Persin () and Ajay Jasr ()
Additional contact information
Adam Persin: University College London
Ajay Jasr: National University of Singapore

Methodology and Computing in Applied Probability, 2016, vol. 18, issue 2, 335-358

Abstract: Abstract This work focuses on sampling from hidden Markov models (Cappe et al. 2005) whose observations have intractable density functions. We develop a new sequential Monte Carlo (e.g. Doucet, 2011) algorithm and a new particle marginal Metropolis-Hastings (Andrieu et al J R Statist Soc Ser B 72:269-342, 2010) algorithm for these purposes. We build from Jasra et al (2013) and Whiteley and Lee (Ann Statist 42:115-141, 2014) to construct the sequential Monte Carlo (SMC) algorithm, which we call the alive twisted particle filter. Like the alive particle filter (Amrein and Künsch, 2011, Jasra et al, 2013), our new SMC algorithm adopts an approximate Bayesian computation (Tavare et al. Genetics 145:505-518, 1997) estimate of the HMM. Our alive twisted particle filter also uses a twisted proposal as in Whiteley and Lee (Ann Statist 42:115-141, 2014) to obtain a low-variance estimate of the HMM normalising constant. We demonstrate via numerical examples that, in some scenarios, this estimate has a much lower variance than that of the estimate obtained via the alive particle filter. The low variance of this normalising constant estimate encourages the implementation of our SMC algorithm within a particle marginal Metropolis-Hastings (PMMH) scheme, and we call the resulting methodology “alive twisted PMMH”. We numerically demonstrate, on a stochastic volatility model, how our alive twisted PMMH can converge faster than the standard alive PMMH of Jasra et al (2013).

Keywords: Alive particle filters; Approximate Bayesian computation; Hidden Markov models; Particle Markov chain Monte Carlo; Sequential Monte Carlo; Twisted particle filters; 65CO5 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-014-9422-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:18:y:2016:i:2:d:10.1007_s11009-014-9422-7

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-014-9422-7

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:18:y:2016:i:2:d:10.1007_s11009-014-9422-7