EconPapers    
Economics at your fingertips  
 

Optimal Exercise Strategies for Operational Risk Insurance via Multiple Stopping Times

Rodrigo Targino, Gareth W. Peters, Georgy Sofronov and Pavel V. Shevchenko
Additional contact information
Gareth W. Peters: University College London
Georgy Sofronov: Macquarie University
Pavel V. Shevchenko: CSIRO

Methodology and Computing in Applied Probability, 2017, vol. 19, issue 2, 487-518

Abstract: Abstract In this paper we demonstrate how to develop analytic closed form solutions to optimal multiple stopping time problems arising in the setting in which the value function acts on a compound process that is modified by the actions taken at the stopping times. This class of problem is particularly relevant in insurance and risk management settings and we demonstrate this on an important application domain based on insurance strategies in Operational Risk management for financial institutions. In this area of risk management the most prevalent class of loss process models is the Loss Distribution Approach (LDA) framework which involves modelling annual losses via a compound process. Given an LDA model framework, we consider Operational Risk insurance products that mitigate the risk for such loss processes and may reduce capital requirements. In particular, we consider insurance products that grant the policy holder the right to insure k of its annual Operational losses in a horizon of T years. We consider two insurance product structures and two general model settings, the first are families of relevant LDA loss models that we can obtain closed form optimal stopping rules for under each generic insurance mitigation structure and then secondly classes of LDA models for which we can develop closed form approximations of the optimal stopping rules. In particular, for losses following a compound Poisson process with jump size given by an Inverse-Gaussian distribution and two generic types of insurance mitigation, we are able to derive analytic expressions for the loss process modified by the insurance application, as well as closed form solutions for the optimal multiple stopping rules in discrete time (annually). When the combination of insurance mitigation and jump size distribution does not lead to tractable stopping rules we develop a principled class of closed form approximations to the optimal decision rule. These approximations are developed based on a class of orthogonal Askey polynomial series basis expansion representations of the annual loss compound process distribution and functions of this annual loss.

Keywords: Insurance; Multiple stopping rules; Operational risk; 60G40; 62P05; 91B30; 41A58 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11009-016-9493-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:19:y:2017:i:2:d:10.1007_s11009-016-9493-8

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-016-9493-8

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:19:y:2017:i:2:d:10.1007_s11009-016-9493-8