EconPapers    
Economics at your fingertips  
 

Performance Analysis of the GI/M/1 Queue with Single Working Vacation and Vacations

Qingqing Ye () and Liwei Liu
Additional contact information
Qingqing Ye: Nanjing University of Science and Technology
Liwei Liu: Nanjing University of Science and Technology

Methodology and Computing in Applied Probability, 2017, vol. 19, issue 3, 685-714

Abstract: Abstract In this paper, we consider a new class of the GI/M/1 queue with single working vacation and vacations. When the system become empty at the end of each regular service period, the server first enters a working vacation during which the server continues to serve the possible arriving customers with a slower rate, after that, the server may resume to the regular service rate if there are customers left in the system, or enter a vacation during which the server stops the service completely if the system is empty. Using matrix geometric solution method, we derive the stationary distribution of the system size at arrival epochs. The stochastic decompositions of system size and conditional system size given that the server is in the regular service period are also obtained. Moreover, using the method of semi-Markov process (SMP), we gain the stationary distribution of system size at arbitrary epochs. We acquire the waiting time and sojourn time of an arbitrary customer by the first-passage time analysis. Furthermore, we analyze the busy period by the theory of limiting theorem of alternative renewal process. Finally, some numerical results are presented.

Keywords: Working vacation; Vacation; Stochastic decomposition; Waiting time; Sojourn time; Busy period; 60K25; 68M20 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-016-9496-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:19:y:2017:i:3:d:10.1007_s11009-016-9496-5

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-016-9496-5

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:19:y:2017:i:3:d:10.1007_s11009-016-9496-5