EconPapers    
Economics at your fingertips  
 

Positive Discrete Spectrum of the Evolutionary Operator of Supercritical Branching Walks with Heavy Tails

E. Yarovaya ()
Additional contact information
E. Yarovaya: Lomonosov Moscow State University

Methodology and Computing in Applied Probability, 2017, vol. 19, issue 4, 1151-1167

Abstract: Abstract We consider a continuous-time symmetric supercritical branching random walk on a multidimensional lattice with a finite set of the particle generation centres, i.e. branching sources. The main object of study is the evolutionary operator for the mean number of particles both at an arbitrary point and on the entire lattice. The existence of positive eigenvalues in the spectrum of an evolutionary operator results in an exponential growth of the number of particles in branching random walks, called supercritical in the such case. For supercritical branching random walks, it is shown that the amount of positive eigenvalues of the evolutionary operator, counting their multiplicity, does not exceed the amount of branching sources on the lattice, while the maximal of these eigenvalues is always simple. We demonstrate that the appearance of multiple lower eigenvalues in the spectrum of the evolutionary operator can be caused by a kind of ‘symmetry’ in the spatial configuration of branching sources. The presented results are based on Green’s function representation of transition probabilities of an underlying random walk and cover not only the case of the finite variance of jumps but also a less studied case of infinite variance of jumps.

Keywords: Symmetric branching random walks; Heavy tails; Evolutionary operator; Discrete spectrum; Green function; 60J80; 60J35; 62G32 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11009-016-9492-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:19:y:2017:i:4:d:10.1007_s11009-016-9492-9

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-016-9492-9

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:19:y:2017:i:4:d:10.1007_s11009-016-9492-9