EconPapers    
Economics at your fingertips  
 

Tensor Approximation of Generalized Correlated Diffusions and Functional Copula Operators

Antonio Dalessandro () and Gareth W. Peters
Additional contact information
Antonio Dalessandro: University College London
Gareth W. Peters: University College London

Methodology and Computing in Applied Probability, 2018, vol. 20, issue 1, 237-271

Abstract: Abstract In this paper we develop a class of applied probabilistic continuous time but discretized state space decompositions of the characterization of a multivariate generalized diffusion process. This decomposition is novel and, in particular, it allows one to construct families of mimicking classes of processes for such continuous state and continuous time diffusions in the form of a discrete state space but continuous time Markov chain representation. Furthermore, we present this novel decomposition and study its discretization properties from several perspectives. This class of decomposition both brings insight into understanding locally in the state space the induced dependence structures from the generalized diffusion process as well as admitting computationally efficient representations in order to evaluate functionals of generalized multivariate diffusion processes, which is based on a simple rank one tensor approximation of the exact representation. In particular, we investigate aspects of semimartingale decompositions, approximation and the martingale representation for multidimensional correlated Markov processes. A new interpretation of the dependence among processes is given using the martingale approach. We show that it is possible to represent, in both continuous and discrete space, that a multidimensional correlated generalized diffusion is a linear combination of processes originated from the decomposition of the starting multidimensional semimartingale. This result not only reconciles with the existing theory of diffusion approximations and decompositions, but defines the general representation of infinitesimal generators for both multidimensional generalized diffusions and, as we will demonstrate, also for the specification of copula density dependence structures. This new result provides immediate representation of the approximate weak solution for correlated stochastic differential equations. Finally, we demonstrate desirable convergence results for the proposed multidimensional semimartingales decomposition approximations.

Keywords: Martingale representation; Semimartingales decomposition; Copula infinitesimal generators (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-017-9545-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:20:y:2018:i:1:d:10.1007_s11009-017-9545-8

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-017-9545-8

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:20:y:2018:i:1:d:10.1007_s11009-017-9545-8