Type I Error Probability Spending for Post-Market Drug and Vaccine Safety Surveillance With Poisson Data
Ivair R. Silva ()
Additional contact information
Ivair R. Silva: Federal University of Ouro Preto
Methodology and Computing in Applied Probability, 2018, vol. 20, issue 2, 739-750
Abstract:
Abstract Statistical sequential hypothesis testing is meant to analyze cumulative data accruing in time. The methods can be divided in two types, group and continuous sequential approaches, and a question that arises is if one approach suppresses the other in some sense. For Poisson stochastic processes, we prove that continuous sequential analysis is uniformly better than group sequential under a comprehensive class of statistical performance measures. Hence, optimal solutions are in the class of continuous designs. This paper also offers a pioneer study that compares classical Type I error spending functions in terms of expected number of events to signal. This was done for a number of tuning parameters scenarios. The results indicate that a log-exp shape for the Type I error spending function is the best choice in most of the evaluated scenarios.
Keywords: Sequential probability ratio test; Expected number of events to signal; Log-exp alpha spending; 62L05; 62L15; 65C05 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11009-017-9586-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:20:y:2018:i:2:d:10.1007_s11009-017-9586-z
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-017-9586-z
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().