Quantile Function Expansion Using Regularly Varying Functions
Thomas Fung () and
Eugene Seneta
Additional contact information
Thomas Fung: Macquarie University
Eugene Seneta: University of Sydney
Methodology and Computing in Applied Probability, 2018, vol. 20, issue 4, 1091-1103
Abstract:
Abstract We present a simple result that allows us to evaluate the asymptotic order of the remainder of a partial asymptotic expansion of the quantile function h(u) as u → 0+ or 1−. This is focussed on important univariate distributions when h(⋅) has no simple closed form, with a view to assessing asymptotic rate of decay to zero of tail dependence in the context of bivariate copulas. Motivation of this study is illustrated by the asymptotic behaviour of the tail dependence of Normal copula. The Normal, Skew-Normal and Gamma are used as initial examples. Finally, we discuss approximation to the lower quantile of the Variance-Gamma and Skew-Slash distributions.
Keywords: Asymptotic expansion; Asymptotic tail dependence; Quantile function; Regularly varying functions; Skew-Slash distribution; Variance-Gamma distribution; 60E05; 41A60 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11009-017-9593-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:20:y:2018:i:4:d:10.1007_s11009-017-9593-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-017-9593-0
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().