EconPapers    
Economics at your fingertips  
 

Stochastic Enumeration with Importance Sampling

Alathea Jensen ()
Additional contact information
Alathea Jensen: George Mason University

Methodology and Computing in Applied Probability, 2018, vol. 20, issue 4, 1259-1284

Abstract: Abstract Many hard problems in the computational sciences are equivalent to counting the leaves of a decision tree, or, more generally, by summing a cost function over the nodes. These problems include calculating the permanent of a matrix, finding the volume of a convex polyhedron, and counting the number of linear extensions of a partially ordered set. Many approximation algorithms exist to estimate such sums. One of the most recent is Stochastic Enumeration (SE), introduced in 2013 by Rubinstein. In 2015, Vaisman and Kroese provided a rigorous analysis of the variance of SE, and showed that SE can be extended to a fully polynomial randomized approximation scheme for certain cost functions on random trees. We present an algorithm that incorporates an importance function into SE, and provide theoretical analysis of its efficacy. We also present the results of numerical experiments to measure the variance of an application of the algorithm to the problem of counting linear extensions of a poset, and show that introducing importance sampling results in a significant reduction of variance as compared to the original version of SE.

Keywords: Randomized algorithms; Monte Carlo sampling; Importance sampling; Sequential importance sampling; Linear extensions; Decision tree; Counting; 05C05; 65C05; 05C85; 05C81; 60J80 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-018-9619-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:20:y:2018:i:4:d:10.1007_s11009-018-9619-2

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-018-9619-2

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:20:y:2018:i:4:d:10.1007_s11009-018-9619-2