EconPapers    
Economics at your fingertips  
 

Detection and Analysis of Spikes in a Random Sequence

Anirban Dasgupta () and Bo Li ()
Additional contact information
Anirban Dasgupta: Purdue University
Bo Li: University of Illinois at Urbana-Champaign

Methodology and Computing in Applied Probability, 2018, vol. 20, issue 4, 1429-1451

Abstract: Abstract Motivated by the more frequent natural and anthropogenic hazards, we revisit the problem of assessing whether an apparent temporal clustering in a sequence of randomly occurring events is a genuine surprise and should call for an examination. We study the problem in both discrete and continuous time formulation. In the discrete formulation, the problem reduces to deriving the probability that p independent people all have birthdays within d days of each other. We provide an analytical expression for a warning limit such that if a subset of p people among n are observed to have birthdays within d days of each other and d is smaller than our warning limit, then it should be treated as a surprising cluster. In the continuous time framework, three different sets of results are given. First, we provide an asymptotic analysis of the problem by embedding it into an extreme value problem for high order spacings of iid samples from the U[0, 1] density. Second, a novel analytical nonasymptotic bound is derived by using certain tools of empirical process theory. Finally, the required probability is approximated by using various bounds and asymptotic results on the supremum of the scanning process of a one dimensional stationary Poisson process. We apply the theories to climate change related datasets, datasets on temperatures, and mass shooting records in the United States. These real data applications of our theoretical methods lead to supporting evidence for climate change and recent spikes in gun violence.

Keywords: Poisson process; Probability; Random sequence; Scan statistic; 47N30; 97K50 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-018-9637-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:20:y:2018:i:4:d:10.1007_s11009-018-9637-0

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-018-9637-0

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:20:y:2018:i:4:d:10.1007_s11009-018-9637-0