Robust Scan Statistics for Detecting a Local Change in Population Mean for Normal Data
Qianzhu Wu () and
Joseph Glaz ()
Additional contact information
Qianzhu Wu: Liberty Mutual Group Inc.
Joseph Glaz: University of Connecticut
Methodology and Computing in Applied Probability, 2019, vol. 21, issue 1, 295-314
Abstract:
Abstract In this article we investigate the performance of robust scan statistics based on moving medians, as test statistics for detecting a local change in population mean, for one and two dimensional data. When a local change in the population mean has not occurred and outliers are not present in the data, we derive approximations for the tail probabilities of fixed window scan statistics based on moving medians. The performance of the proposed robust scan statistics are evaluated and compared to, via power calculations, the performance of scan statistics based on moving sums, that have been previously investigated in the statistical literature. Numerical results based on a simulation study, for independent and identically distributed (iid) normal observations with known variance, indicate that in presence of outliers the scan statistic based on moving medians outperform the scan statistic based on moving sums, in terms of achieving more accurately the specified probability of type I error. The performance of a multiple window scan statistic based on moving medians for detecting a local change in population mean, for one and two dimensional normal data in presence of outliers, when the size of the window where a change has occurred is unknown has been investigated as well.
Keywords: Minimum p-value statistic; Moving mean; Moving median; Multiple window scan statistic; Robust scan statistic; 60G35; 62E17; 62F03; 62F35 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11009-018-9668-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:21:y:2019:i:1:d:10.1007_s11009-018-9668-6
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-018-9668-6
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().