EconPapers    
Economics at your fingertips  
 

Constructions of New Classes of One- and Two-Sample Nonparametric Location Tests

Bhargab Chattopadhyay () and Nitis Mukhopadhyay ()
Additional contact information
Bhargab Chattopadhyay: Indian Institute of Information Technology Vadodara
Nitis Mukhopadhyay: University of Connecticut

Methodology and Computing in Applied Probability, 2019, vol. 21, issue 4, 1229-1249

Abstract: Abstract In this paper, we examine the role of nonparametric test statistics with constructions analogous to those introduced in Mukhopadhyay and Chattopadhyay (Stat Pap 54:827–837 2013) and Mukhopadhyay and Chattopadhyay (Sri Lankan J Appl Stat 15:71–80 2014) in the context of one-sample and two-sample location problems. In the case of a one-sample location problem, we focus on the customary sign test and its appropriate modifications. In the case of a two-sample location problem, we focus on Mann-Whitney test when the population distribution F remains unknown. Using large sample approximations, we propose new versions of tests and compare their performances with those of the customary sign and Mann-Whitney tests. We do so on the basis of asymptotic power, asymptotic efficiency, and robustness. Our present treatment substantially broadens the coverage found in Walsh (Ann Math Stat 17:360–361 1946, Ann Math Stat 20:64–81 1949) and Ylvisaker (J Am Stat Assoc 72:551–556 1977. In summary, we have come up with (i) a test that is more efficient than a sign test, and (ii) a limited optimality of Mann-Whitney test within our class of newly constructed tests.

Keywords: One-sample location problem; Two-sample location problem; U-statistics; 62G10; 62G20; 62G35 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-018-9671-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:21:y:2019:i:4:d:10.1007_s11009-018-9671-y

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-018-9671-y

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:21:y:2019:i:4:d:10.1007_s11009-018-9671-y