EconPapers    
Economics at your fingertips  
 

Asymptotically Optimal Quickest Change Detection in Multistream Data—Part 1: General Stochastic Models

Alexander G. Tartakovsky ()
Additional contact information
Alexander G. Tartakovsky: Moscow Institute of Physics and Technology

Methodology and Computing in Applied Probability, 2019, vol. 21, issue 4, 1303-1336

Abstract: Abstract Assume that there are multiple data streams (channels, sensors) and in each stream the process of interest produces generally dependent and non-identically distributed observations. When the process is in a normal mode (in-control), the (pre-change) distribution is known, but when the process becomes abnormal there is a parametric uncertainty, i.e., the post-change (out-of-control) distribution is known only partially up to a parameter. Both the change point and the post-change parameter are unknown. Moreover, the change affects an unknown subset of streams, so that the number of affected streams and their location are unknown in advance. A good changepoint detection procedure should detect the change as soon as possible after its occurrence while controlling for a risk of false alarms. We consider a Bayesian setup with a given prior distribution of the change point and propose two sequential mixture-based change detection rules, one mixes a Shiryaev-type statistic over both the unknown subset of affected streams and the unknown post-change parameter and another mixes a Shiryaev–Roberts-type statistic. These rules generalize the mixture detection procedures studied by Tartakovsky (IEEE Trans Inf Theory 65(3):1413–1429, 2019) in a single-stream case. We provide sufficient conditions under which the proposed multistream change detection procedures are first-order asymptotically optimal with respect to moments of the delay to detection as the probability of false alarm approaches zero.

Keywords: Asymptotic optimality; Changepoint detection; General non-i.i.d. models; Hidden Markov models; Moments of the delay to detection; r-Complete convergence; Statistical process control; Surveillance; MSC 62L10; MSC 62L15; MSC 60G40; MSC 62C10; MSC 62C20 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-019-09735-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:21:y:2019:i:4:d:10.1007_s11009-019-09735-3

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-019-09735-3

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:21:y:2019:i:4:d:10.1007_s11009-019-09735-3