A Fast Algorithm for Maximal Propensity Score Matching
Pavel S. Ruzankin ()
Additional contact information
Pavel S. Ruzankin: Sobolev Institute of Mathematics
Methodology and Computing in Applied Probability, 2020, vol. 22, issue 2, 477-495
Abstract:
Abstract We present a new algorithm which detects the maximal possible number of matched disjoint pairs satisfying a given caliper when a bipartite matching is done with respect to a scalar index (e.g., propensity score), and constructs a corresponding matching. Variable width calipers are compatible with the technique, provided that the width of the caliper is a Lipschitz function of the index. If the observations are ordered with respect to the index then the matching needs O(N) operations, where N is the total number of subjects to be matched. The case of 1-to-n matching is also considered. We offer also a new fast algorithm for optimal complete one-to-one matching on a scalar index when the treatment and control groups are of the same size. This allows us to improve greedy nearest neighbor matching on a scalar index.
Keywords: Propensity score matching; Nearest neighbor matching; Matching with caliper; Variable width caliper; 92C50; 62P10; 05C70 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11009-019-09718-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:22:y:2020:i:2:d:10.1007_s11009-019-09718-4
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-019-09718-4
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().