EconPapers    
Economics at your fingertips  
 

The Extended Matrix-Variate Beta Probability Distribution on Symmetric Matrices

Mariem Tounsi ()
Additional contact information
Mariem Tounsi: Sfax University

Methodology and Computing in Applied Probability, 2020, vol. 22, issue 2, 647-676

Abstract: Abstract The notion of generalized power function in the space of real symmetric matrices is used to introduce a kind of extended matrix-variate beta function. With the aid of this, we define a different versions of extended matrix-variate beta distributions. Some fundamental properties of these distributions are established. We show that using a linear transformation on the extended matrix-variate beta distributions of the first and second kind, we can generalize these distributions. We also show that the distribution of the sum of two independent inverse Riesz matrices introduced by Tounsi and Zine (J Multivar Anal 111:174–182, 2012) can be written in terms of the generalized extended matrix-variate beta function. Finally, using Fixed point iterative method, we provide a calculable maximum a posteriori (MAP) estimator for the unknown covariance matrix of a multivariate normal distribution based on the class of the extended matrix-variate beta prior distribution. Additionally, we evaluated the Gaussian finite sample performance by calculating such evaluation criteria as Mean Square Error (MSE) and Hilbert-Schmidt distance (DHS). The obtained results confirm the performance of the proposed prior.

Keywords: Random matrices; Extended beta function; Division algorithm; Inverse Riesz distribution; Beta-Riesz distribution; Covariance estimation; MAP estimator; Fixed point algorithm; 62E10; 60E05; 15A52; 15B48 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11009-019-09725-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:22:y:2020:i:2:d:10.1007_s11009-019-09725-5

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-019-09725-5

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:22:y:2020:i:2:d:10.1007_s11009-019-09725-5