Gamma Process-Based Models for Disease Progression
Ayman Hijazy () and
András Zempléni ()
Additional contact information
Ayman Hijazy: Eötvös Loránd University
András Zempléni: Eötvös Loránd University
Methodology and Computing in Applied Probability, 2021, vol. 23, issue 1, 241-255
Abstract:
Abstract Classic chronic diseases progression models are built by gauging the movement from the disease free state, to the preclinical (asymptomatic) one, in which the disease is there but has not manifested itself through clinical symptoms, after spending an amount of time the case then progresses to the symptomatic state. The progression is modelled by assuming that the time spent in the disease free and the asymptomatic states are random variables following specified distributions. Estimating the parameters of these random variables leads to better planning of screening programs as well as allowing the correction of the lead time bias (apparent increase in survival observed purely due to early detection). However, as classical approaches have shown to be sensitive to the chosen distributions and the underlying assumptions, we propose a new approach in which we model disease progression as a gamma degradation process with random starting point (onset). We derive the probabilities of cases getting detected by screens and minimize the distance between observed and calculated distributions to get estimates of the parameters of the gamma process, screening sensitivity, sojourn time and lead time. We investigate the properties of the proposed model by simulations.
Keywords: Disease progression models; Gamma process; Sojourn time; Lead time bias; Sensitivity; 60K10; 62P10; 62B10 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11009-020-09771-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:23:y:2021:i:1:d:10.1007_s11009-020-09771-4
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-020-09771-4
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().