Hierarchical Archimedean Dependence in Common Shock Models
Umberto Cherubini () and
Sabrina Mulinacci
Additional contact information
Umberto Cherubini: University of Bologna
Methodology and Computing in Applied Probability, 2021, vol. 23, issue 1, 143-163
Abstract:
Abstract In this paper we show how to extend a simple common shock model with Archimedean dependence of the hidden variables to the non-exchangeable case. The assumption is that the hidden risk factors are linked by a hierarchical Archimedean dependence structure, possibly fully nested. We give directions about how to implement the model and to address the issue that the hidden variables must be put in descending dependence order. We show how the model can be simplified in the Gumbel-Marshall-Olkin distribution in Cherubini and Mulinacci (2017), the only case in which exponential distribution of the observed variables is preserved.
Keywords: Common shock models; Marshall-Olkin distribution; Hierarchical Archimedean copulas; Systemic risk; 60E99; 62H20 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11009-020-09816-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:23:y:2021:i:1:d:10.1007_s11009-020-09816-8
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-020-09816-8
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().