EconPapers    
Economics at your fingertips  
 

Modelling Joint Behaviour of Asset Prices Using Stochastic Correlation

László Márkus () and Ashish Kumar ()
Additional contact information
László Márkus: Eötvös Loránd University
Ashish Kumar: Eötvös Loránd University

Methodology and Computing in Applied Probability, 2021, vol. 23, issue 1, 341-354

Abstract: Abstract Association or interdependence of two stock prices is analyzed, and selection criteria for a suitable model developed in the present paper. The association is generated by stochastic correlation, given by a stochastic differential equation (SDE), creating interdependent Wiener processes. These, in turn, drive the SDEs in the Heston model for stock prices. To choose from possible stochastic correlation models, two goodness-of-fit procedures are proposed based on the copula of Wiener increments. One uses the confidence domain for the centered Kendall function, and the other relies on strong and weak tail dependence. The constant correlation model and two different stochastic correlation models, given by Jacobi and hyperbolic tangent transformation of Ornstein-Uhlenbeck (HtanOU) processes, are compared by analyzing daily close prices for Apple and Microsoft stocks. The constant correlation, i.e., the Gaussian copula model, is unanimously rejected by the methods, but all other two are acceptable at a 95% confidence level. The analysis also reveals that even for Wiener processes, stochastic correlation can create tail dependence, unlike constant correlation, which results in multivariate normal distributions and hence zero tail dependence. Hence models with stochastic correlation are suitable to describe more dangerous situations in terms of correlation risk.

Keywords: Correlation risk; Heston model; Kendall function; Stochastic correlation; Stock price association; Tail dependence; 60G99 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11009-020-09838-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:23:y:2021:i:1:d:10.1007_s11009-020-09838-2

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-020-09838-2

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:23:y:2021:i:1:d:10.1007_s11009-020-09838-2