On the Convergence Complexity of Gibbs Samplers for a Family of Simple Bayesian Random Effects Models
Bryant Davis () and
James P. Hobert ()
Additional contact information
Bryant Davis: Department of Statistics University of Florida
James P. Hobert: Department of Statistics University of Florida
Methodology and Computing in Applied Probability, 2021, vol. 23, issue 4, 1323-1351
Abstract:
Abstract The emergence of big data has led to so-called convergence complexity analysis, which is the study of how Markov chain Monte Carlo (MCMC) algorithms behave as the sample size, n, and/or the number of parameters, p, in the underlying data set increase. This type of analysis is often quite challenging, in part because existing results for fixed n and p are simply not sharp enough to yield good asymptotic results. One of the first convergence complexity results for an MCMC algorithm on a continuous state space is due to Yang and Rosenthal (2019), who established a mixing time result for a Gibbs sampler (for a simple Bayesian random effects model) that was introduced and studied by Rosenthal (Stat Comput 6:269–275, 1996). The asymptotic behavior of the spectral gap of this Gibbs sampler is, however, still unknown. We use a recently developed simulation technique (Qin et al. Electron J Stat 13:1790–1812, 2019) to provide substantial numerical evidence that the gap is bounded away from 0 as n → ∞. We also establish a pair of rigorous convergence complexity results for two different Gibbs samplers associated with a generalization of the random effects model considered by Rosenthal (Stat Comput 6:269–275, 1996). Our results show that, under a strong growth condition, the spectral gaps of these Gibbs samplers converge to 1 as the sample size increases.
Keywords: Convergence rate; Geometric ergodicity; High-dimensional inference; Monte Carlo; Quantitative bound; Spectral gap; Total variation distance; Trace-class operator; Wasserstein distance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11009-020-09808-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:23:y:2021:i:4:d:10.1007_s11009-020-09808-8
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009
DOI: 10.1007/s11009-020-09808-8
Access Statistics for this article
Methodology and Computing in Applied Probability is currently edited by Joseph Glaz
More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().