EconPapers    
Economics at your fingertips  
 

Efficient and robust estimation for autoregressive regression models using shape mixtures of skewt normal distribution

Uchenna Chinedu Nduka ()
Additional contact information
Uchenna Chinedu Nduka: University of Nigeria

Methodology and Computing in Applied Probability, 2022, vol. 24, issue 3, 1519-1551

Abstract: Abstract Multiple linear regression model based on normally distributed and uncorrelated errors is a popular statistical tool with application in various fields. But these assumptions of normality and no serial correlation are hardly met in real life. Hence, this study considers the linear regression time series model for series with outliers and autocorrelated errors. These autocorrelated errors are represented by a covariance-stationary autoregressive process where the independent innovations are driven by shape mixture of skew-t normal distribution. The shape mixture of skew-t normal distribution is a flexible extension of the skew-t normal with an additional shape parameter that controls skewness and kurtosis. With this error model, stochastic modeling of multiple outliers is possible with an adaptive robust maximum likelihood estimation of all the parameters. An Expectation Conditional Maximization Either algorithm is developed to carryout the maximum likelihood estimation. We derive asymptotic standard errors of the estimators through an information-based approximation. The performance of the estimation procedure developed is evaluated through Monte Carlo simulations and real life data analysis.

Keywords: Autoregressive process; Expectation maximization algorithm; Linear regression model; Robust estimation; Skew-t-distribution; 62M10; 37M10 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11009-021-09872-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09872-8

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/11009

DOI: 10.1007/s11009-021-09872-8

Access Statistics for this article

Methodology and Computing in Applied Probability is currently edited by Joseph Glaz

More articles in Methodology and Computing in Applied Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09872-8